四、螺栓群(9x3)的接觸分析
如圖11為鋼板螺栓連接模型的網格劃分。螺栓形式為9x3,即沿拉力方向9排,垂直拉力方向3列。實體材料部分采用4節點四面體單元,接觸單元采用節點對(Node to Node Gap)形式。在螺栓洞口區域細化了網格,整個模型的單元總數為15 875,節點總數為5 3720螺栓預拉力155 kN,板軸向拉力假定沿一側板端面均勻分布,采用逐步提高板端拉力試算的方法得到板側極限拉應力為82 MPa。
圖12為法向接觸力在接觸面上的分布情況,從圖中可以看出,法向接觸力主要在墊圈區域的鋼板接觸面上較高,法向接觸力隨與墊圈區域距離增大迅速減小并保持相對穩定的數值。圖13為摩擦力在接觸面上的分布情況,從圖中可以看出,摩擦力水平同樣主要在墊圈區域的鋼板接觸面上較高,并集中分布在栓孔一側,摩擦力隨與墊圈區域距離增大迅速減小并保持相對穩定的數值。
在對(9x3)螺栓群的計算分析過程中,發現與(5x2)排螺栓群相比,在摩擦力接近承載極限時,端部螺栓所起的作用進一步增大,端部螺栓往往最先達到破壞。表2為上述模型在拉力接近極限拉力時9排螺栓周圍最大剪應力(沿拉力方向,即摩擦力)的變化規律,從表中可知,在9排螺栓傳遞端部均布拉力時,兩端螺栓周圍峰值剪應力最大,分別為20.b MPa和20.0 MPa,內部螺栓周圍剪應力逐漸減小,中間排螺栓周圍剪應力峰值為2.5 MPa。最大峰值剪應力大約是平均峰值剪應力的2.8倍,是單排螺栓最小峰值剪應力8.2倍。從表中還可以看出,除端部螺栓外,內部七排螺栓周圍峰值剪應力相差不大。在拉力較小時兩層鋼板之間的變形較小,因此各排螺栓所起的作用相差不大,表現為鋼板表面沿拉力方向的剪應力在鋼板上分布較為平均;隨著拉力的增大,鋼板變形相應增大,多排螺栓周圍剪應力的變化較大,兩端螺栓周圍的剪應力較大,說明兩端螺栓傳遞的摩擦力較大,中間排螺栓傳遞的摩擦力相應減小。
上述分析說明長連接中,兩端螺栓傳遞的剪應力最大,螺栓位置約靠近內部,傳遞的摩擦力越小,因此在螺栓設計中如果按照各排螺栓平均傳遞摩擦力計算時,需要預留一定的安全度以免端部螺栓過早破壞而導致連接失效和破壞。
五、結論
通過較多算例對3排、4排、直至10排螺栓群進行了接觸有限元分析,發現對于多排螺栓來說,螺栓排數越多,摩擦力傳遞的不平衡性越明顯,這一現象應得到足夠重視。算例分析表明,從5排螺拴開始,隨螺栓排數增加,端排螺栓承擔的摩擦力峰值比所有螺栓平均摩擦力峰值高出20%以上直至數倍。建議在具體工程中根據具體連接形式對5排及5排以上螺栓群連接進行接觸有限元分析,以保證螺栓連接的安全性。